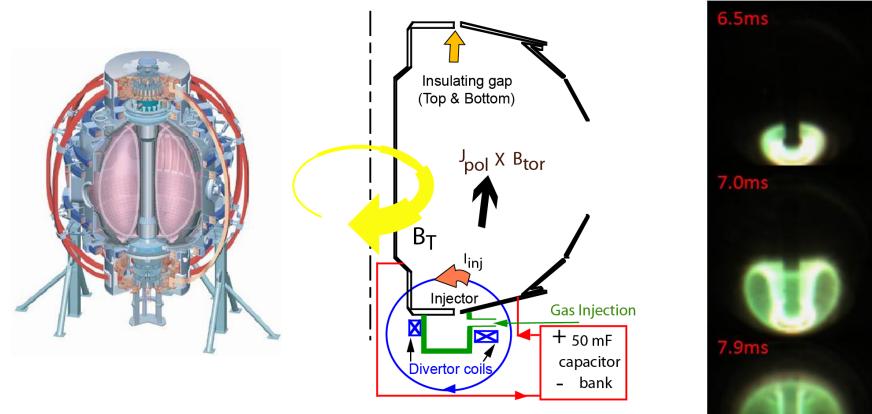


Supported by

Solenoid-Free Plasma Startup

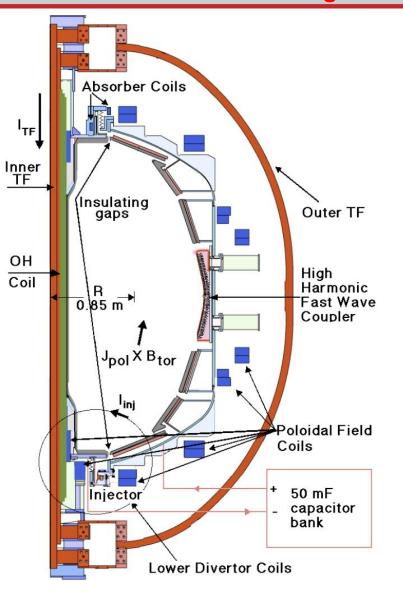

R. Raman, D. Mueller

University of Washington / PPPL

NSTX Research Forum for FY2010 Research 1-3 December 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

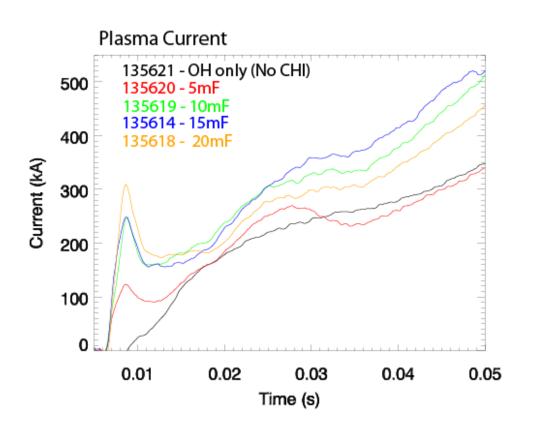
Transient CHI: Axisymmetric Reconnection Leads to Formation of Closed Flux Surfaces



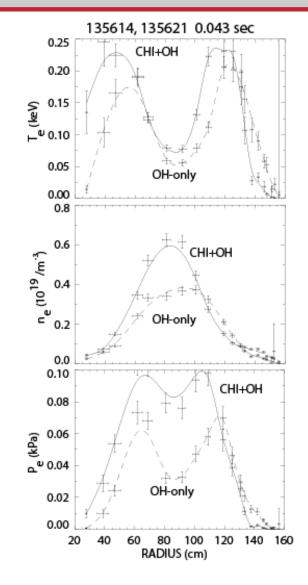
- Demonstration of closed flux current generation
 - Aided by gas injection from below divertor plate region
- Demonstration of coupling to induction (2008)
 - Aided by staged capacitor bank capability

CHI for an ST: T.R. Jarboe, Fusion Technology, 15 (1989) 7 Transient CHI: R. Raman, T.R. Jarboe, B.A. Nelson, et al., PRL 90, (2003) 075005-1

"If the coupling current could be doubled, pronounced flux savings should happen naturally" – FY2009 SFPS Research Forum Conclusion Flux Savings on NSTX Now Realized (FY09 Results)


Long-pulse (400ms) CHI discharges in a 'stuffed- injector' current mode used to ablate Low-Z impurities from lower divertor [Helped FY09 CHI]

Deuterium Glow Discharge cleaning employed to chemically sputter and reduce oxygen levels [Helped FY09 CHI]


A buffer field was provided using new PF coils located in the upper divertor region (Absorber region) to reduce interaction of CHI discharge with un-conditioned upper divertor plates [Helped FY09 CHI]

Lithium evaporation on lower divertor plates improved discharge performance [Helped FY08 and 09 CHI]

Using Only 27kJ of Capacitor Bank Energy 300kA of CHI Started Discharge Generated and Coupled to Induction

Additional effort required to reduce absorber arcs to allow operation above 300kA

NSTX is Unique in the World Program Investigating CHI Plasma Startup & Fast-Wave Assisted Ramp-up

Priorities for FY2010 aimed at improving CHI discharges from FY2009

- Develop operating conditions aimed at improving the control of CHI
- Increasing the current and closed poloidal flux production of CHI
- Increase ohmic flux savings using CHI by reducing impurity influx
- Increase high-performance plasma pulse lengths using CHI startup
- FY2010 Research Milestone (R10-2): Characterize HHFW heating, current drive, and current ramp-up in deuterium H-mode plasmas.

CHI group discussion to occur in B233 from 1-5:30PM (Today) & RF coupling to CHI group discussion to occur tomorrow, B233 from 10AM to 12:30PM